Project: **988** Project title: **CMIP6** Principal investigator: **Martin Schupfner** Report period: **2020-11-01 to 2021-08-31**

Activities MPI-M

In early 2021, the ICON-ESM DECK experiments in low resolution (LR, 160 km atmosphere and 40 km ocean), which were performed at the end of 2020, went through further postprocessing and quality-testing, and were prepared for the cmorization by DKRZ.

The evaluation of the ICON-ESM DECK experiments was continued and the model documentation paper (Jungclaus et al., "The ICON Earth System Model Version 1.0", to be submitted in August 2021) was finalized.

ICON-ESM-V1 is, to our knowledge, the first climate/earth system model that is based on unstructured grids in the atmosphere (ICON-A, Giorgetta et al., 2018) and ocean (Korn, 2017) components. The model evaluation concentrated on comparison between the late 20th/early 21st century climate simulated in the historical ensemble and observational and reanalyses-based data. We also compare the quality of coupled ocean-atmosphere simulations with AMIP-type experiment using ICON-A.

Notable achievements of the ICON-ESM-LR simulations are well-balanced top-of-atmosphere radiation, stable key climate quantities in the control simulation, and a good representation of the historical surface temperature evolution. The model has overall biases, which are comparable to those of other CMIP5 or CMIP6 models, but ICON-ESM performs less well than its predecessor, the Max Planck Institute for Meteorology Earth System model at comparable resolution. Problematic biases are diagnosed in ICON-ESM in the vertical cloud distribution and the mean zonal wind field. In the ocean, sub-surface temperature and salinity biases are of concern as is a too strong seasonal cycle of the sea-ice cover in both hemispheres. ICON-ESM has a higher equilibrium climate sensitivity than MPI-ESM (3.7 vs. 3.0°C).

Figure 1: Estimating the transient climate response (left) and equilibrium climate sensitivity ECS from idealized DECK experiments: a) evolution of global surface temperature in the 1pctCO2 (blue) and abrupt4xCO2 (red) experiments together with the piControl run (black). B) Gregory-style regression method to estimate ECS for ICON-ESM (dark red) and MPI-ESM (green).

Computing time report AWI

In 2021 no new simulations were performed in this project. Postprocessing has been applied to the model data that have been produced in 2020. In addition, a few more data have been published at ESGF. Evaluation of the simulations has resulted in an interesting aspect regarding AWI-CM compared to MPI-ESM. The transient climate response to idealized 1%CO2 per year forcing is around 20% larger in AWI-CM compared to MPI-ESM and the equilibrium climate sensitivity 10% larger in AWI-CM compared to MPI-ESM. This difference manifests in different projections for this century according to AWI-CM compared to MPI-ESM - see Fig. 2. A paper on this is published in ESSOAR and is in the review process for JGR Oceans.

Figure 2: Development of global mean 2 m temperature anomaly (°C) relative to 1995-2014 according to historical and scenario simulations from AWI-CM-MR, MPI-ESM-LR, and MPI-ESM-HR.

References

Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., . . . Stevens, B. (2018). ICON-A, the Atmosphere Component of the ICON Earth System Model: I. Model Description. Journal of Advances in Modeling Earth Systems, 10(7), 1613-1637. doi:10.1029/2017ms001242

Korn, P. (2017). Formulation of an unstructured grid model for global ocean dynamics. Journal of Computational Physics, 339, 525-552. doi:10.1016/j.jcp.2017.03.009

Semmler, T., Jungclaus, J. H., Danek, C., Goessling, H., Koldunov, N. V., Rackow, T., & Sidorenko, D. (2021). Ocean model formulation influences transient climate response. Earth and Space Science Open Archive ESSOAr.