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Overview

In this period we have worked on a variety of aspects within the tasks proposed under the project. We have on the
one hand analyzed and evaluated climate model data from the Coupled Model Intercomparison Project (CMIP)
with reanalysis data focusing on causal networks and extreme events like droughts and heatwaves. On the other
hand we have worked to create models for synthetic datasets that could serve as benchmark datasets for various
causal discovery methods. Before we delve into the tasks individually, we would like to state that the ongoing
global pandemic affected the use of our granted computing resources. Additionally, the hiring of two postdocs, for
whom a part of the resources was intended, at the chair of Climate Informatics headed by Prof. Runge at the TU
Berlin faced another hurdle as the IT-system of the university suffered a hack in March 2021, from which it is still
recovering.

Report for Task (i) Development and application of latent causal discovery methodology for obser-
vations CMIP model evaluation

The ESMValTool (Eyring et al., 2020) preprocessor as well as existing and newly created diagnostics are used to
preprocess ECMWF ERA-5 reanalysis and CMIP simulations. These data are used to study causal networks using
PCMCI. Several topics are addressed including the evaluation of CMIP6 models based on causal networks related
to Arctic-midlatitude teleconnections (Galytska et al., 2022 in prep.), the analysis of modes of climate variability
and the evaluation of CMIP6 models based on the relationship between causal networks for sea level pressure data,
which allows to define ”fingerprints” of causal links for each model and precipitation patterns. The latter is based
on a work from Nowack et al. (2020) for CMIP5 data and example of recent results can be seen in Fig. 1.

Figure 1: A parabolic relationship between the F1-score for causal networks of sea level pressure from CMIP6
historical runs and reanalysis data and precipitation change over land under SSP5-8.5 scenario is found (similar to
Nowack et al. (2020) for the CMIP5 RCP8.5 scenario) This can in turn help to estimate future precipitation change
over land under climate change more accurately.

Report for Task (ii) Development and application of mixed-type causal discovery for observations
and CMIP model evaluation

In causal discovery tasks, the need to deal with mixed-type data is important because the choice of variables
ranges from continuously-valued variables, such as temperature and pressure, to discretely-valued variables, such as
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climate indices with values representing different regimes (e.g. the Madden-Julien Oscillation). An essential subtask
of causal discovery is conditional independence testing to determine whether the correlation between variables is
explained by confounding due to a third variable. We constructed models for mixed-type data generation, and
worked on the theoretical development of a conditional independence test. The testing of this model and the
independence testing will consume most of the remaining node-h before the current reporting period ends. In
particular, exploring and developing on existing Kernel-based methods for independence testing, as stated in the
proposal, has been embarked on but has not used as many computational resources as requested. We attribute it
to the delay in the hiring process for the postdoc positions in the Climate Informatics branch at TU Berlin caused
by COVID-19 and the IT-hack of the entire university intranet system.

The analysis of modes of climate variability from task (i) was taken further to include non-continuous data due
to distinct regimes with different causal networks using the Regime-PCMCI based on (Saggioro et al., 2020).

Report for Task (iii) Application of Causal Discovery to systematically find emergent constraints

Recent causal discovery methods have been developed to understand cause-effect phenomena in the climate as a
two step procedure. One estimates the modes of variability through a dimensionality reduction technique, such
as Varimax, since the modes or teleconnections are emergent properties of models. Subsequently one applies the
specific causal discovery technique, such as PCMCI, (Runge et al., 2019),(Runge, 2020), (Gerhardus and Runge,
2020) that fits the best to the specific setting. A major challenge that lies here is the lack of sufficient ground
truth datasets that can help benchmark the casual discovery techniques. We have worked on a simplified stochastic
climate model that outputs gridded data and represents climate modes and their teleconnections through a Spatially
Aggregated Vector-Autoregressive (SAVAR) model (Tibau et al., 2021). This model is used to construct benchmarks
and evaluate the strengths and weaknesses of causal discovery techniques on spatiotemporal data. In this work,
we also present a novel causal discovery method at the grid level that has orders of magnitude better performance
compared to current approaches, called MappedPCMCI. Additionally, before the current reporting period ends we
would still be using some of the remaining computational resources to generate about 5000 models.

Report for Task (iv) Development and application of causally explainable deep learning techniques
for observations and CMIP model analysis

In the task of causal discovery even the atomic bivariate case, seemingly the simplest, is challenging and requires
further assumptions to be identifiable at all. In recent years, a variety of approaches to address this problem has been
developed, each with its own assumptions, strengths, and weaknesses. In machine learning, common benchmarks
with real and synthetic data have been a main driver of innovation. Synthetic benchmarks can explicitly model
data characteristics such as the underlying functional relations and distributions to assess how methods deal with
these. However, a systematic assessment of the state-of-the-art of methods was missing so far. In (Käding and
Runge, 2022) a detailed and systematic comparison of a range of methods on a novel collection of datasets that
systematically models individual data challenges is presented. Further, we evaluate more recent methods missing
in previous benchmarks. The novel suite of datasets will be contributed to the causeme.net benchmark platform
to provide a continuously updated and searchable causal discovery method inter-comparison database. Our aim is
to assist users in finding the most suitable methods for their problem setting and for method developers to improve
current and develop new methods.

Report for Task (v) Application of extreme event detection machine learning techniques for CMIP
model analysis

Classical drought indices (standardized precipitation index SPI and standardized precipitation evapotranspiration
index SPEI) were computed with the ESMValTool for CMIP5 and CMIP6 data, see (Weigel et al., 2021). These
indices where analyzed and are the basis for further investigations and comparisons to ML methods for drought
detection. For this, experiments where done using an detection algorithm for anomalous interval (MDI, Barz et al.
2019). Additionally, several ML algorithms were compared for emulating the soil moisture index (SMI) obtained
from a hydrological model with variables from ERA5-Land reanalysis data and land use information from MODIS
satellite observation, including ablation study for coarser resolutions (Gottfriedsen et al., 2021). The publications
Gottfriedsen et al. (2021) and Weigel et al. 2021 include results based on calculations for Project 1083. Heat waves
were analyzed using Gaussian mixture models to detect extreme events and the change in their frequency using
CMIP6 data sets under different global warming level scenarios (Paçal et al., 2022 in prep.).
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