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Advancing Earth system models requires tackling key biases 
and uncertainties in their projections that largely stem from 
parametrisations such as cloud cover. This report summarizes 
the progress made within the project 1179 in the last 12 months 
regarding the development of machine learning (ML)-based 
parametrisations for ICON [1] in order to advance climate 
modelling and the generation of observational products for 
process-oriented model evaluation.  

 

Task (2.1): ML-based parametrisations for the ICON-A 
model 

We used high-resolution (2.5 - 5 km) ICON simulations from the 
NARVAL and QUBICC projects to develop neural nets (NNs) for 
ML-based cloud parametrisations, and to subsequently 
implement them into ICON-A replacing the current 
parametrisation: the first version of ICON-A-ML. First, we 
evaluated the “offline” performance of the newly developed ML-
based cloud cover parametrisation (i.e., predictions compared to 
the “truth”, namely the coarse-grained high-resolution 
simulation). As an example, Figure 1 shows the ability of the ML-
based parametrisation to accurately predict vertically resolved 
cloud cover [2]. We have successfully coupled the ML-
parametrisation to ICON to run ICON-A-ML online (see Task 
2.2). 

In related work, we have demonstrated that a variational-
autoencoder (VAE) can predict subgrid-scale thermodynamics 
from a coarse-scale superparametrisation (SP) climate state [3], 
see Figure 2. The VAE’s latent space can distinguish convective 
regimes, including shallow/deep/no convection and reveals the 
main sources of convective predictability at different latitudes. Additional insight into physical mechanisms of 
different parametrisations is gained via causal discovery. Preliminary results show that causality can 
successfully help optimize the inputs of the NN (i.e., using only physical-drivers), the NN’s architecture (i.e., 
simpler models with increased interpretability), and achieve stable prognostic simulations (i.e., NN coupled 
to the GCM) [4]. 

Work is on-going to replace further parametrisations such as convection, gravity drag and radiation with 
dedicated ML-based parametrisations. We are also in the process to automate the retuning process of ICON-
A-ML after a new parametrisation has been implemented, which will significantly speed up the development 
process.  

 

Figure 2: Wheeler Kiladis diagram based on tropical outgoing longwave radiation [15°N-15°S] of SP (a), of VAE 
predictions (b) and the absolute difference of spatio-temporal wave spectra VAE-SP (c) for 1 year of SP simulations [3]. 

Figure 1: Offline ML-based cloud cover 
parametrisation. Panels a) and b) show 
cloud cover snapshots produced with the 
column-based NN trained and evaluated on 
the coarse-grained NARVAL R2B4 data 
running offline, i.e., not coupled to the ICON 
simulation. (a) cloud scene estimated by the 
NN, b) reference cloud scene from coarse-
grained NARVAL data) [2]. Note that some 
columns over land could not be vertically 
interpolated due to overlapping topography 
and are therefore missing in a) 



 

 

Task (2.2): ICON-A and ICON-A-ML simulations 

We have successfully implemented the above 
ML-based cloud cover parametrisation (see 
Task 2.1) into ICON-A via the Fortran-Keras 
Bridge (FKB; https://github.com/scientific-
computing/ FKB), resulting in a hybrid ICON-A-
ML model. Figure 3 shows first results of 
running the parametrisation online.  

The evaluation of the newly developed ICON-A-
ML model is accomplished via the ESMValTool 
[5], which has been successfully extended to 
handle native ICON output (icosahedral grid) 
[6]. The ESMValTool provides common pre-
processing operations and a large collection of 
diagnostics that entails climate mean state, 
trends, and variability. Furthermore, the 
ESMValTool also allows benchmarking different 
model versions. Therefore, we have also 
performed a number of reference runs with the 
ICON-A model to compare with the ICON-A-ML 
model. Although this is still work in progress, first 
tests (see Figure 3) show reasonable cloud 
cover results of the ICON-A-ML model (80 km 
resolution; R2B5 grid).  

 

Task (2.3): ML-based cloud observational products 

Process-oriented model evaluation enables a more rigorous and physics-related understanding of the model 
performance and its biases. Evaluating cloud properties by cloud type is a promising way to identify 
weaknesses in the representation of clouds in models.  

We have developed a satellite-data-driven ML-based evaluation framework for clouds that is applicable to 
climate model output of varying horizontal and temporal resolution. As an example, Figure 4 shows the 
predicted fraction of cirrus clouds in coarse data that is similar to model output [7]. Cloud types predicted this 
way show characteristics that are in agreement with expectations from observations. 

 

 

 

Figure 4 Mean predicted fraction of the Ci 
(cirrus/cirrostratus clouds) type per grid 
cell, averaged over a 2.5-year timespan. 
The predictions where performed on coarse 
resolution (5°) ESA Cloud_cci data. 
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Figure 3: First preliminary results of running the ML-
based cloud cover parametrisation online: cloud cover 
vs. height.  icov_1: Conventional ICON-A simulation with 
the Sundqvist scheme as cloud cover scheme; 
cl_area/vol_icov_4/5/6: ICON simulations with different 
types of NNs instead of the Sundqvist scheme; 
cl_vol/area_qubicc: Coarse-grained cloud volume and area 
fraction of a QUBICC simulation (of Nov, 2004). 
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