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Parametrisations of subgrid-scale effects in climate models lead to biases and uncertainties in their future projections
which could be improved with machine learning (ML)-based methods. This report summarizes the progress made
within the project 1179 in the last 12 months on developing ML-based parametrisations for ICON-A (Giorgetta
et al., 2018) and observational products for process-oriented model evaluation. While we prioritized the develop-
ment of MLL microphysics parametrization through high-resolution simulations, ongoing efforts involve conducting
regional large-eddy simulations to generate additional training data, as initially outlined in the proposal.

Task 2.1: Development of ML-based parametrisations for ICON-A
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ICON-A is on-going for several subgrid-scale parametri- jori | | Bons T punensneme I 0oas
sations. This development involves the integration of in- : " retmen o012
dividual ML-based parametrizations with I[CON-A one

at a time, resulting in a hybrid model, namely ICON-
A-ML, reflecting their implementation separately. (a)
Cloud cover: we have now extended our ML-based
cloud cover approach to discover interpretable under-
lying equations describing a cloud cover parametrisa-
tion by combining symbolic regression, sequential fea-
ture selection, and physical constraints (Grunduner et .
al., 2024; Grundner, 2024), see Fig. 1. (b) Convec- |
tion: We have explored different methods for develop- W @0 e 8 100 0 20 40 60 8 100
ing ML-based stochastic parametrisations (Behrens et o cover fco

al., Under review, 2024; Behrens, 2024). Our results
indicate that compared to individual neural networks,
multi-network ensembles improve the prediction of con-
vective processes in the planetary boundary layer and
enhance the representation of extreme precipitation and
its associated diurnal cycle (not shown). Moreover, we
have developed several ML-based convection parametri-
sations trained on coarse-grained high-resolution sub-
grid fluxes, assessing their performance against differ-
ent benchmarks (Heuer et al., 2023). The U-Net demonstrates high accuracy in predicting convection compared to
the original simulation (offline), and work is progress to couple it to ICON-A, resulting in ICON-A-ML. ¢) Ra-
diation: We have successfully developed and coupled an ML radiation parametrisation based on coarse-resolution
data (80km) to ICON-A. The resulting hybrid model, ICON-A-ML, accurately represents the climate of the orig-
inal model, and a publication detailing this work is currently being prepared (Hafner et al., 2024). d) Gravity
Waves: Work is on-going to develop ML-based gravity wave drag parametrisation at JSC since that’s where the
underlying high-resolution training data is generated - only the eventual coupling will be performed at DKRZ. e)
Microphysics: We have developed an ML-based microphysics parametrisation, including feature engineering and
physics-constraints (Sarauer et al., 2024) and have performed high-resolution simulations using ICON with Hamlite
to include the influence of aerosols. f) Turbulence: We are currently developing an ML-based parametrisation
to replace ICON’s vertical diffusion scheme due to atmospheric turbulence using idealized simulations. We have
also designed a regional large-eddy simulation (LES) with ICON to generate real-world training data. Although
setting up a suitable ICON-LES is complex (e.g., boundary conditions, external parameters, region of interest and
convective regime), we currently have a near-complete configuration that addresses these intricacies and is poised for
detailed simulations of atmospheric processes at high resolution. g) Causally-informed NNs: We have combined
causal discovery and ML methodologies to enhance MIL-based parametrisations (Iglesias-Suarez et al., 2024). Our
demonstration showcases how integrating causality with deep learning effectively eliminates spurious correlations
and optimizes the neural network algorithm.
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Figure 1: Predicted cloud cover distributions of se-
lected Pareto-optimal models evaluated on the DYA-
MOND data, divided into four different cloud regimes.
The numbers in the upper left indicate the Hellinger dis-
tance between the predicted and the actual cloud cover
distributions for each model and cloud regime. Fig. 3 in
Grundner et al., 2024.



Task 2.2: Development, tuning and simulations with ICON-A-ML

Once the newly developed ML-based parametrisations are coupled to ICON-A, the resulting model (ICON-A-ML)
needs to be re-tuned to allow for a fair evaluation in comparison with the previously tuned ICON-A version.

We have developed an automatic tuning method
following a Bayesian approach, which involves fit-
ting Gaussian process emulators to the parameter-
to-output map. These emulators not only facilitate
the tuning of a state-of-the-art atmospheric model
but also enable process understanding at low com-
putational costs, as they extensively describe the
parameter-to-output maps. A manuscript detailing
this work is currently in preparation (Pastori et al.,
2024).

In order to facilitate the evaluation of ICON-A model
output using the ESMValTool with a light wrap-
per called ICONEval (newly developed), which fur-
ther simplifies the evaluation of ICON simulations
to one single command line call. For this work,
the ESMValTool was run using resources of Project
1179 to make possible the evaluation of ICON-A-ML
model runs. This work was published by Schlund
et al.,, 2023 and presented at the AGU Fall Meet-

ing.
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Figure 2: Time series of global and annual mean near-
surface air temperature for two ICON simulations (blue
and orange line), reanalysis data from ERAS5 (black dotted
line), and CMIP6 models (gray lines).

Task 2.3: ML-based observational products for the evaluation of ICON-ML

In order to improve understanding of the representation of clouds and their relevant processes in climate models, we
had developed a new ML-based framework relying on satellite observations that assigns distributions of established
cloud types to coarse data (Kaps, Lauer, Camps-Valls, et al., 2023). Expanding upon this work, we have created
CCClim, a cloud-type climatology derived from available observational datasets (Kaps, Lauer, Kazeroni, et al.,
2023a). This work aims to streamline the evaluation of climate models, enhancing their efficacy by enabling a more
direct and objective examination of clouds according to their various types, as illustrated in the accompanying
paper currently under review (Kaps, Lauer, Kazeroni, et al., 2023b). With this work and the accompanying thesis
Kaps, 2024, we have completed the workpackage on ML-based observational products.
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