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Overview

In the last reporting period, we have worked on developing improved parameterizations for earth system models
with machine learning, new causal discovery algorithms for high-dimensional data sets and different regimes as
well as methods to infer causally meaningful representations from data. We have applied existing causal inference
algorithms to better understand the causal drivers for specific cloud regimes, atmospheric chemical-dynamical
processes and air-sea interactions based on observations and climate model data. We used variational autoencoders
to characterize and analyze heatwaves and to detect and analyze droughts in climate model projections.

Task (i) Application of state-of-the-art causal discovery methods for observations and earth system
model evaluation

For the Eddy Rich Earth System Models (EERIE) Horizon 2020 project we used PCMCI+ to analyze causal
networks for variables related to air-sea interactions from reanalysis and Earth System Model (ESM) data. High-
resolution native climate model data were preprocessed to prepare for the application of causal discovery methods.
To showcase the pivotal role causal inference can play in disentangling complex chemical-dynamical influences on
tropical stratospheric ozone we analyzed different causal discovery algorithms for satellite observations and the
chemistry-transport model simulations (Gülletutan, 2025). Dimension reduction, causal network estimation and
evaluation together with a causal weighting scheme were used to constrain climate model precipitation projections
based on historical performance Debeire et al. (2025).

Task (ii) Development and application of improved parameterizations for earth system models with
causal informed neural networks and equation discovery

In our hybrid ESM simulations we conducted experiments with machine learning stochastic and deterministic
multi-member convection parameterizations using GPU nodes on Levante to compute the model spread of distinct
convective variables, resulting in a spread that it strongly related to drivers of convective processes such as ocean
currents, topography or the atmospheric general circulation. This proved that machine-learning multi-member
parameterizations are able to capture not only the magnitude of the spread of convective processes but rather
collocate the spread with the observed variability that we expect to see in hybrid simulations (Behrens et al., 2025).
In addition, an improved sea-ice albedo parameterization was developed with data driven equation discovery using
symbolic regression on satellite and reanalysis data.

Task (iii) Development and application of methods for regime-dependent and mixed-type causal
discovery

A mixed-type independence test was developed in (Popescu et al., 2025) and accepted for publication at CLeaR
2025. As part of the European Space Agency (ESA) CMUG (Climate Modelling User Group) project, we used
causal inference to better understand the causal drivers for cloud properties. We applied the causal discovery
algorithm LPCMCI on the ESA Climate Change Initiative (CCI) and ERA5 data to estimate causal links from
cloud-controlling factors to cloud properties and quantified them using causal effect estimation focused on the marine
stratocumulus region in western South America. Appenheimer (2024) used different causal discovery methods to
test the robustness of their results for precipitation anomalies and related variables in Southeastern Africa.

Task (iv) Development and application of methods for causal inference with high-dimensional spatio-
temporal data sets

Gamella et al. (2025) studied the practical performance of causal representation learning methods in a controlled
real-world setting. Herman et al. (2025) proposed a more realistic sampling approach to simulate data better
resembling real-world conditions. Herman and Runge (2024) proposed using multi-variate climate indices to improve
causal effect estimation without losing information, shown via ENSO–NAO analysis.
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Figure 1: From Gamella et al. (2025): experimental results of applying the CRL method of Yao et al. (2024) to
a real-world dataset with known ground truth latent causal variables. (A, B, C): Average R2-score of predicting
ground truth factors from the learned representation. Variables in the highlighted content blocks are expected to
obtain a score close to one, while variables in the score block should have a lower score.

Task (v) Application of extreme event and tipping points detection machine learning techniques.

Lanson and Runge (2025) estimate the autocorrelation of a tipping element to detect tipping points more reliably.
The standardized precipitation evapotranspiration index (SPEI) was computed to detect droughts in climate model
projections (Lindenlaub et al., 2025). Additionally, we used variational autoencoder (VAE) to characterize and
analyze heatwaves in multivariate data.
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