Given observed conditions, the coupled general circulation models (CGCMs) could predict the climate at seasonal or even longer time-scale. Under the support of this project, the seasonal prediction skill of six CGCMs (BCC-CSM1-1, CanCM4, GFDL-CM2p1, HadCM3, MIROC5 and MPI-ESM-LR) in both of non-initialised and initialised experiment was analysed. Intercomparison the performance of the six models in predicting the East Asian summer monsoon (EASM), we found that the GFDL-CM2p1 outperform the other five CGCMs. Therefore, the GFDL-CM2p1 was used as the lateral and boundary condition to drive the COMSO-CLM. The intercomparison work has been finished and submitted to an international journal (Huang et al., 2016).

Then, this project also undertakes the simulation for a cooperation project “dynamical downscaling over Tibetan Plateau”. The COSMO-CLM is employed for the downscaling experiment. It is driven by ERA-Interim with the horizontal resolution at 0.11 ° over the Tibetan Plateau (25-40°N, 75-105°E) in 1979-2010. The analysis work is focus on evaluating multi-models performance in capturing the thermal comfort over Tibetan Plateau. A scientific paper is preparing (Chi, 2017).