1062: ÖkoLuft
active project
Principal investigator: Volker Grewe
DLR, Institut für Physik der Atmosphäre (Community project)
Project abstract
Report 1/2018 to 12/2018
Report 1/2019 to 12/2019
Report 1/2020 to 12/2020
Report 1/2021 to 12/2021
Report 1/2022 to 12/2022
Report 1/2023 to 12/2023
Report 1/2024 to 12/2024
Publications
-
DOI: 10.5194/acp-24-1743-2024,
Pletzer, J. and Grewe, V.: Sensitivities of atmospheric composition and climate to altitude and latitude of hypersonic aircraft emissions, Atmos. Chem. Phys., 24, 1743–1775, https://doi.org/10.5194/acp-24-1743-2024, [Titel anhand dieser DOI in Citavi-Projekt übernehmen] 2024.
-
DOI: 10.5194/egusphere-2024-220,
Cohen, Y., Hauglustaine, D., Bellouin, N., Lund, M. T., Matthes, S., Skowron, A., Thor, R., et al.: Multi-model assessment of climatologies in the upper
troposphere–lower stratosphere using the IAGOS data, EGUsphere [preprint]
-
DOI: 10.5194/gmd-16-3313-2023, 2023,
Yin, F., Grewe, V., Castino, F., Rao, P., Matthes, S., Dahlmann, K., Dietmüller, S., Frömming, C., Yamashita, H., Peter, P., Klingaman, E., Shine, K. P.,
Lührs, B., and Linke, F.: Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel
ACCF 1.0 of EMAC 2.53, Geosci. Model Dev., 16, 3313–3334
-
DOI: 10.5194/gmd-17-4031-2024, 2024,
Castino, F., Yin, F., Grewe, V., Yamashita, H., Matthes, S., Dietmüller, S., Baumann, S., Soler, M., Simorgh, A., Mendiguchia Meuser, M., Linke, F., and
Lührs, B.: Decision-making strategies implemented in SolFinder 1.0 to identify eco-efficient aircraft trajectories: application study in AirTraf 3.0,
Geosci. Model Dev., 17, 4031–4052,
-
DOI: 10.5281/zenodo.13682729 [Titel anhand dieser DOI in Citavi-Projekt übernehmen],
Völk, S., Yamashita, H., Megill, L., Dahlmann, K., & Grewe, V. (2024). OpenAirClim (v2.8.3). Zenodo
-
DOI: 10.5281/zenodo.8422188,
Johannes Pletzer, & Mattia Righi. (2024). johannespletzer/rf-of-hypersonic-trajectories: Estimate radiative forcing of hypersonic emissions on route network level (v2.0). Zenodo. https://doi.org/10.5281/zenodo.10949834
-
DOI: 10.5194/egusphere-2024-2866,
van 't Hoff, J. A., Hauglustaine, D., Pletzer, J., Skowron, A., Grewe, V., Matthes, S., Meuser, M. M., Thor, R. N., and Dedoussi, I. C.: Intermodel comparison of the atmospheric composition changes due to emissions from a future supersonic aircraft fleet, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2866, 2024.
-
DOI: 10.5194/acp-8-4621-2008,
Grewe, V., & Stenke, A. (2008). AirClim: an efficient tool for climate evaluation of aircraft technology. Atmospheric Chemistry and Physics, 8(16), 4621-4639.
-
DOI: 10.5194/egusphere-2023-1777,
Pletzer, J., and Grewe, V., Sensitivities of atmospheric composition and climate to altitude and latitude of hypersonic aircraft emissions, ACP (preprint), 2023a.
-
DOI: 10.3390/aerospace9050231,
Rao, P., Yin, F., Grewe, V., Yamashita, H., Jöckel, P., Matthes, S., ... & Frömming, C. (2022). Case Study for Testing the Validity of NO x-Ozone Algorithmic Climate Change Functions for Optimising Flight Trajectories. Aerospace, 9(5), 231.
-
DOI: 10.3390/aerospace9030146,
Simorgh, A., Soler, M., González-Arribas, D., Matthes, S., Grewe, V., Dietmüller, S., ... & Meuser, M. M. (2022). A comprehensive survey on climate optimal aircraft trajectory planning. Aerospace, 9(3), 146.
-
DOI: 10.5194/gmd-16-3313-2023,
Yin, F., Grewe, V., Castino, F., Rao, P., Matthes, S., Dahlmann, K., ... & Linke, F. (2023). Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53. Geoscientific Model Development, 16(11), 3313-3334.
-
DOI: 10.1016/j.trd.2016.03.006,
Dahlmann, K., Grewe, V., Frömming, C., & Burkhardt, U. (2016). Can we reliably assess climate mitigation options for air traffic scenarios despite large uncertainties in atmospheric processes?. Transportation Research Part D: Transport and Environment, 46, 40-55.
-
DOI: 10.5194/gmd-4-195-2011,
Deckert, R., Jöckel, P., Grewe, V., Gottschaldt, K. D., & Hoor, P. (2011). A quasi chemistry-transport model mode for EMAC. Geoscientific Model Development, 4(1), 195-206.
-
DOI: 10.5194/acp-21-9151-2021,
Frömming, C., Grewe, V., Brinkop, S., Jöckel, P., Haslerud, A. S., Rosanka, S., van Manen, J., and Matthes, S.: Influence of the actual weather situation on non-CO2 aviation climate effects: The REACT4C Climate Change Functions, Atmos. Chem. Phys., 2021.
-
DOI: 10.1016/j.atmosenv.2014.05.059,
Grewe, V., Champougny, T., Matthes, S., Frömming, C., Brinkop, S., Søvde, A.O., Irvine,E.A., Halscheidt, L., Reduction of the air
traffic's contribution to climate change: A REACT4C case study, 10.1016/j.atmosenv.2014.05.059, Atmos. Environm. 94, 616-625,
2014b.
-
DOI: 10.5194/gmd-10-2615-2017,
Grewe, V., Tsati, E., Mertens, M., Frömming, C., & Jöckel, P. (2017). Contribution of emissions to concentrations: The TAGGING 1.0 submodel based on the Modular Earth Submodel System (MESSy 2.52). Geoscientific Model Development, 10(7), 2615-2633.
-
DOI: 10.1088/1748-9326/aa5ba0,
Grewe, V., Matthes, S., Frömming, C., Brinkop, S., Jöckel, P., Gierens, K., ... & Shine, K. (2017). Feasibility of climate-optimized air traffic routing for trans-Atlantic flights. Environmental Research Letters, 12(3), 034003.
-
DOI: 10.5194/gmd-3-717-2010,
Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., ... & Kern, B. (2010). Development cycle 2 of the modular earth submodel system (MESSy2). Geoscientific Model Development, 3(2), 717-752.
-
DOI: 10.5194/gmd-9-1153-2016,
Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmeijer, C. A. M., Brinkop, S., Cai, D. S., Dyroff, C., Eckstein, J., Frank, F., Garny, H., Gottschaldt, K.-D., Graf, P., Grewe, V., Kerkweg, A., Kern, B., Matthes, S., Mertens, M., Meul, S., Neumaier, M., Nützel, M., Oberländer-Hayn, S., Ruhnke, R., Runde, T., Sander, R., Scharffe, D., and Zahn, A.: Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51, Geosci. Model Dev., 9, 1153–1200
-
DOI: 10.3390/aerospace4030042,
Matthes, S., Grewe, V., Dahlmann, K., Frömming, C., Irvine, E., Lim, L., ... & Yin, F. (2017). A concept for multi-criteria environmental assessment of aircraft trajectories. Aerospace, 4(3), 42.
-
DOI: 10.5194/egusphere-2022-285,
Pletzer, J. F., Hauglustaine, D., Cohen, Y., Jöckel, P., and Grewe, V.: The Climate Impact of Hypersonic Transport, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-285, 2022.
-
Pletzer, J., and Grewe, V., Sensitivities of Climate and Atmospheric Composition Changes to Emissions from a Potential Fleet of Hypersonic Aircraft as a Function of Altitude and Latitude of Emissions, ACPD, in prep. 2022
-
DOI: 10.5194/gmd-16-1459-2023,
Thor, R. N., Mertens, M., Matthes, S., Righi, M., Hendricks, J., Brinkop, S., ... & Smith, S. (2023). An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing. Geoscientific Model Development, 16(5), 1459-1466.
-
DOI: 10.5194/gmd-9-3363-2016,
Yamashita, H., Grewe, V., Jöckel, P., Linke, F., Schaefer, M., & Sasaki, D. (2016). Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0. Geoscientific Model Development, 9(9), 3363-3392.
-
DOI: 10.5194/gmd-13-4869-2020,
Yamashita, H., Yin, F., Grewe, V., Jöckel, P., Matthes, S., Kern, B., Dahlmann, K., and Frömming, C. Various aircraft routing options for air traffic simulation in the chemistry-climate model EMAC 2.53: AirTraf 2.0, Geosci. Model Dev. 13, 4869-4890, https://doi.org/10.5194/gmd-13-4869-2020, 2020.
-
DOI: 10.5194/gmd-16-3313-2023,
Yin, F., Grewe, V., Castino, F., Rao, P., Matthes, S., Dahlmann, K., ... & Linke, F. (2023). Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53. Geoscientific Model Development, 16(11), 3313-3334.
-
DOI: https://zenodo.org/records/8422189,
Pletzer, J. and Grewe, V. rf-of-hypersonic-trajectories, GitHub repo, 2023b.
-
DOI: 10.15480/882.8681,
Dietmüller, S., Matthes, S., Dahlmann, K., Yamashita, H., Simorgh, A., Soler, M., ... & Castino, F. (2023). A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1. 0. Geoscientific model development, 16(15), 4405-4425.
-
DOI: 10.5194/gmd-7-175-2014,
Grewe, V., Frömming, C., Matthes, S., Brinkop, S., Ponater, M., Dietmüller, S., ... & Hullah, P. (2014). Aircraft routing with minimal climate impact: The REACT4C climate cost function modelling approach (V1. 0). Geoscientific Model Development, 7(1), 175-201.
-
DOI: 10.5194/egusphere-egu23-15843,
Matthes, S., Nickl, A. L., Peter, P., Mertens, M., Jöckel, P., Ziereis, H., ... & Zahn, A. (2023). Aviation-induced changes of atmospheric composition in the UTLS in the multi-scale Earth system model MECO (1) (No. EGU23-15843). Copernicus Meetings.
-
DOI: 10.5194/acp-22-14323-2022,
Pletzer, J., Hauglustaine, D., Cohen, Y., Jöckel, P., & Grewe, V. (2022). The climate impact of hydrogen-powered hypersonic transport. Atmospheric Chemistry and Physics, 22(21), 14323-14354.
-
DOI: 10.3390/aerospace8020036,
Matthes, S., Lim, L., Burkhardt U., Dahlmann, K., Dietmüller, S., Grewe, V., Haselrut, A., Hendricks, J., Owen, B., Pitari, G., Righi, M., Skowron, A., Mitigation of Non-CO2 Aviation's Climate Impact by Changing Cruise Altitudes Aerospace 8, 36, https://doi.org/10.3390/aerospace8020036, 2021.
-
DOI: 10.5194/gmd-2022-203,,
Dietmüller, S., Matthes, S., Dahlmann, K., Yamashita, H., Simorgh, A., Soler, M., Linke, F., Lührs, B., Meuser, M. M., Weder, C., Grewe, V., Yin, F., and Castino, F.: A python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2022-203, in review, 2022.
-
DOI: 10.5194/egusphere-2022-285,
Pletzer, J. F., Hauglustaine, D., Cohen, Y., Jöckel, P., and Grewe, V.: The Climate Impact of Hypersonic Transport, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-285, 2022.
-
Thor, R.N, Mertens, M., Matthes, S., Righi, M., Hendricks, J., Brinkop, S., Graf, P., Grewe, V., Jöckel,P., and Smith, S., An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing, GMDD, submitted, 2022.
-
DOI: 10.3390/aerospace8010014,
Marks, T., Dahlmann, K., , Grewe, V., Gollnick, V., Linke, F., Matthes, S., Stumpf, E., Swaid, M., Unterstrasser, S. , Yamashita, H., Zumegen, C., 2021: Climate Impact Mitigation Potential of Formation Flight, Aerospace 8(1), 14
-
DOI: 10.5194/acp-20-12347-2020,
Rosanka, S., Frömming, C., and Grewe, V.: The impact of weather pattern and related transport processes on aviation’s contribution to ozone and methane concentrations from NOx emissions, Atmospheric Chemistry and Physics
-
DOI: 10.3390/aerospace8020033,
Yamashita, H., Yin, F., Grewe, V., Jöckel, P., Matthes, S., Kern, B., Dahlmann, K., and Frömming, C., Analysis of Aircraft Routing Strategies for North Atlantic Flights by Using AirTraf 2.0, Aerospace, 8, 33. https://doi.org/10.3390/aerospace8020033, 2021.
-
DOI: 10.5194/gmd-13-4869-2020,
Yamashita, H., Yin, F., Grewe, V., Jöckel, P., Matthes, S., Kern, B., Dahlmann, K., and Frömming, C. Various aircraft routing options for air traffic simulation in the chemistry-climate model EMAC 2.53: AirTraf 2.0, Geosci. Model Dev. 13, 4869-4890, https://doi.org/10.5194/gmd-13-4869-2020, 2020.
-
DOI: 10.3390/aerospace7120172,
Dahlmann, K., Matthes, S., Yamashita, H., Unterstrasser, S. , Grewe, V., Marks, T., 2020: Assessing the Climate Impact of Formation Flights, Aerospace 7(12), 172
-
DOI: 10.5194/acp-21-9151-2021,
Frömming, C., Grewe, V., Brinkop, S., Jöckel, P., Haslerud, A. S., Rosanka, S., van Manen, J., and Matthes, S.: Influence of the actual weather situation on non-CO2 aviation climate effects: The REACT4C Climate Change Functions, Atmos. Chem. Phys., 2021.
-
DOI: 10.5194/acp-2020-529,
Frömming, C., Grewe, V., Brinkop, S., Jöckel, P., Haselrud, A.S., Rosanka, S., van Manen, J., and Matthes, S., Influence of the actual weather situation on non-CO2 aviation climate effects: The REACT4C Climate Change Functions, Atmos. Chem. Phys. Disc., https://doi.org/10.5194/acp-2020-529, in review, 2020.
-
Dahlmann K., Matthes, S., Yamashita, H., Unterstrasser, S., Grewe, V., Marks, T., Assessing the climate impact of formation flights, Aerospace, in review, 2020.
-
DOI: 10.5194/acp-2020-46,
Rosanka, S., Frömming, C, and Grewe, V., The impact of weather pattern and related transport processes on aviation's contribution to ozone and methane concentrations from NOx emissions, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-46, in press, 2020.
-
DOI: 10.5194/gmd-13-4869-2020,
Yamashita, H., Yin, F., Grewe, V., Jöckel, P., Matthes, S., Kern, B., Dahlmann, K., and Frömming, C. Various aircraft routing options for air traffic simulation in the chemistry-climate model EMAC 2.53: AirTraf 2.0, Geosci. Model Dev. 13, 4869-4890, https://doi.org/10.5194/gmd-13-4869-2020, 2020.
-
Matthes S., Lührs, B., Dahlmann, K., Grewe, V., Linke, F., Yin F., Klingaman, E., Shine, K., Climate-optimized trajectories and robust mitigation potential: Flying ATM4E, Aerospace, in review, 2020.
-
Marks T., et al., Formations Flight, Aerospace, in review, 2020.
-
DOI: 10.1016/j.trd.2018.12.016,
van Manen, J., and Grewe, V., Algorithmic climate change functions for the use in eco-efficient flight planning, Transp. Res. Part D 67, 388-405, doi:10.1016/j.trd.2018.12.016, 2019.
-
Yamashita, H., Yin, F., Grewe, V., Jöckel, P., Matthes, S., Kern, B., Dahlmann, K., Frömming, C., Various aircraft routing options for air traffic simulation in chemistry-climate model EMAC 2.53: AirTraf 2.0, Geosci. Model Dev., in preparation – full draft available, 2019.
-
Frömming, C.; Grewe, V.; Brinkop, S.; Matthes, S.; Haslerud, A.; Irvine, E.; Rosanka, S.; van Manen, J. Influence of weather situations on aviation climate effects: The REACT4C Climate Change Functions. Atmospheric Chemistry and Physics, in preparation, 2019.
Frömming, C., Grewe, V., Brinkop, S., Matthes, S., Haslerud, A., Klingaman, E., Rosanka, S., van Manen, J. Influence of actual
weather situations on aviation climate effects: The REACT4C Climate Change Functions. Atmospheric Chemistry and Physics, in
preparation, 2019.