620: Multiskalen-Simulationen mit EULAG
active project
Principal investigator: Andreas Doernbrack
DLR, Institut für Physik der Atmosphäre (Community project)
Project abstract
Report 1/2010 to 12/2010
Report 1/2011 to 12/2011
Report 1/2012 to 12/2012
Report 1/2013 to 12/2013
Report 1/2015 to 12/2015
Report 1/2016 to 12/2016
Report 1/2017 to 12/2017
Report 1/2018 to 12/2018
Report 1/2019 to 12/2019
Report 1/2020 to 12/2020
Report 1/2021 to 12/2021
Report 1/2022 to 12/2022
Report 1/2023 to 12/2023
Report 1/2024 to 12/2024
Publications
-
DOI: 10.1029/2023JD040156,
Binder, M., and Dörnbrack, A., 2024: Observing gravity waves generated by moving sources with ground-based Rayleigh lidars. Journal of Geophysical Research: Atmospheres, 129, e2023JD040156
-
DOI: 10.1175/JAS-D-24-0037.1,
Dörnbrack, A., 2024: Transient Tropopause Waves. J. Atmos. Sci., 81, 1647–1668, https://doi.org/10.1175/JAS-D-24-0037.1.
-
DOI: 10.1175/JAS-D-20-0230.1,
Mixa, T., A. Dörnbrack, and M. Rapp, 2021: Nonlinear Simulations of Gravity Wave Tunneling and Breaking over
Auckland Island, Journal of the Atmospheric Sciences, 78, 1567-1582.
-
DOI: 10.1029/2021JD034683,
Reichert, R., B. Kaifler, N. Kaifler, A. Dörnbrack, M. Rapp, and J. L. Hormaechea, 2021: High-Cadence Lidar Observations of Middle Atmospheric Temperature and Gravity Waves at the Southern Andes Hot Spot. Journal of Geophysical Research: Atmospheres, 126, e2021JD034683
-
DOI: 10.1029/2022JD036654,
Dörnbrack, A., P. Bechtold, and U. Schumann, 2022: High-resolution aircraft observations of turbulence and waves in the free atmosphere and comparison with global model predictions. Journal of Geophysical Research: Atmospheres, 127, e2022JD036654.
-
DOI: 10.1029/2021JD035908,
Rodriguez Imazio, P., Dörnbrack, A., Urzua, R. D., Rivaben, N., & Godoy, A., 2022: Clear Air Turbulence observed across a tropopause fold over the Drake Passage - A Case Study. Journal of Geophysical Research: Atmospheres, 127, e2021JD035908
-
DOI: 10.1029/2022JD037491,
Rodriguez Imazio, P., Mininni, P. D., Godoy, A., Rivaben, N., & Dörnbrack, A., 2023: Not all clear air turbulence is Kolmogorov - The fine-scale nature of atmospheric turbulence. Journal of Geophysical Research: Atmospheres, 128, e2022JD037491.
-
DOI: 10.5194/amt-16-1087-2023,
Witschas, B., Gisinger, S., Rahm, S., Dörnbrack, A., Fritts, D. C., and Rapp, M., 2023: Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves, Atmospheric Measurement Technology, 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023, 2023
-
DOI: 10.1175/JAS-D-21-0057.1,
Dörnbrack, A., S. D. Eckermann, B. P. Williams, and J. Haggerty, 2022: Stratospheric gravity waves excited by propagating Rossby wave trains – A DEEPWAVE case study. Journal of the Atmospheric Sciences, 79, 567-591.
-
DOI: 10.1175/JAS-D-20-0230.1,
Mixa, T., A. Dörnbrack, and M. Rapp, 2021: Nonlinear Simulations of Gravity Wave Tunneling and Breaking over
Auckland Island, Journal of the Atmospheric Sciences, 78, 1567-1582.
-
DOI: 10.1002/wea.3863,
Dörnbrack, A., Kaifler, B., Kaifler, N., Rapp, M., Wildmann, N., Garhammer, M., Ohlman, K., Payne, J., Sandercock, M., and E. Austin, 2020: Unusual appearance of mother-of-pearl clouds above El Calafate, Argentina (50° 21′ S, 72° 16′ W). Weather, in press.
-
DOI: 10.1175/JAS-D-21-0057.1,
Dörnbrack, A., S. D. Eckermann, B. P. Williams, and J. Haggerty, 2022: Stratospheric gravity waves excited by propagating Rossby wave trains – A DEEPWAVE case study. Journal of the Atmospheric Sciences, 79, 567-591.
-
DOI: 10.1175/JAS-D-20-0312.1,
Dörnbrack, A., 2021: Stratospheric mountain waves trailing across Northern Europe, J. Atmos. Sci., (published online
ahead of print 2021) https://journals.ametsoc.org/view/journals/atsc/aop/JAS-D-20-0312.1/JAS-D-20-0312.1.xml
-
DOI: 10.1175/BAMS-D-20-0034.1,
Rapp, M., Kaifler, B., Dörnbrack, A., Gisinger, S., Mixa, T., Reichert, R., Kaifler, N., Knobloch, S., Eckert, R., Wildmann, N., Giez, A., Krasauskas, L., Preusse, P., Geldenhuys, M., Riese, M., Woiwode, W., Friedl-Vallon, F., Sinnhuber, B., Torre, A. d. l., Alexander, P., Hormaechea, J. L., Janches, D., Garhammer, M., Chau, J. L., Conte, J. F., Hoor, P., & Engel, A. (2021). SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot, Bulletin of the American Meteorological Society, 102(4), E871-E893
-
DOI: 10.1175/JAS-D-20-0230.1,
Mixa, T., A. Dörnbrack, and M. Rapp, 2021: Nonlinear Simulations of Gravity Wave Tunneling and Breaking over
Auckland Island, Journal of the Atmospheric Sciences, 78, 1567-1582.
-
DOI: 10.1002/qj.3848,
Wilms, H., Bramberger, M., and A. Dörnbrack, 2020: Observation and Simulation of Mountain Wave Turbulence above Iceland: Turbulence Intensification due to Wave Interference. Q. J. R. Met. Soc., 1– 21. https://doi.org/10.1002/qj.3848
-
Mixa, T., A. Dörnbrack, and M. Rapp, 2020: Nonlinear Simulations of Gravity Wave Tunneling and Breaking over Auckland Island, J. Atmos. Sci., under revision.
-
DOI: 10.5194/acp-20-10091-2020,
Gisinger, S., Wagner, J., and Witschas, B.: Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia, Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020, 2020.
-
DOI: 10.5194/wes-5-1359-2020,
Englberger, A., Dörnbrack, A., and Lundquist, J. K., 2020: Does the rotational direction of a wind turbine impact the wake in a stably stratified atmospheric boundary layer? Wind Energ. Sci., 5, 1359–1374, https://doi.org/10.5194/wes-5-1359-2020, 2020
-
DOI: 10.5194/wes-2019-105,
Englberger, A., Lundquist, J. K., and A. Dörnbrack, 2020: Should wind turbines rotate in the opposite direction? Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2019-105. accepted 14 October 2020
-
DOI: 10.1002/wea.3863,
Dörnbrack, A., Kaifler, B., Kaifler, N., Rapp, M., Wildmann, N., Garhammer, M., Ohlman, K., Payne, J., Sandercock, M., and E. Austin, 2020: Unusual appearance of mother-of-pearl clouds above El Calafate, Argentina (50° 21′ S, 72° 16′ W). Weather, in press.
-
DOI: 10.1175/JAMC-D-19-0079.1,
Bramberger, M., A. Dörnbrack, H. Wilms, F. Ewald, and R. Sharman, 2020: Mountain-Wave Turbulence Encounter of the Research Aircraft HALO above Iceland. J. Appl. Meteor. Climatol., 59, 567–588, https://doi.org/10.1175/JAMC-D-19-0079.1
-
Englberger, A. and A. Dörnbrack, 2016: Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study, Bound.
Lay. Meteorol., doi:10.1007/s10546-016-0208-z; http://link.springer.com/article/10.1007%2Fs10546-016-0208-z
Englberger, A. and A. Dörnbrack, 2017: Impact of the diurnal cycle of the atmospheric boundary layer on wind-turbine wakes: A numerical modelling study. Bound. Lay. Meteorol. https://doi.org/10.1007/s10546-017-0309-3
Dörnbrack, A., S. Gisinger, and B. Kaifler, 2017: On the Interpretation of Gravity Wave Measurements by Ground-Based Lidars. Atmosphere, 8, 1–22.
Gisinger, S., 2017: Gravity waves in the lower atmosphere in mountainous regions and the role of the tropopause. Dissertation, submitted to LMU Munich.
-
Grogger, H., 2016: Simulation of Deep Gravity Wave Propagation Using Eulag. Master Thesis subm. to the University of Innsbruck
-
von Larcher and Dörnbrack MZ 2014
-
Gisinger et al TCFD 2015
-
Schröttle and Dörnbrack 2013
-
Kühnlein et al. 2013
-
Kühnlein et al. JCP 2012